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Abstract. This article presents the free vibration analysis of advanced composite plates 

such as functionally graded plates and of simply supported plate porous using a high order 

shear deformation theory. In is work the material properties of the porous plate FG vary 

across the thickness. The proposed theory contains four unknowns unlike the other 

theories. Therefore, it is useless to use the shear correction factors. The Hamilton's 

principle will be used herein to determine the equations of motion. Since, the plate are 

simply supported the Navier procedure will be retained. To show the precision of this 

model, several comparisons have been made between the present results and those of 

existing theories in the literature for non-porous plates. Effects of the exponent graded 

and porosity factors are investigated. 

 

Keywords. Composite plates, FG, high order theory, Hamilton's principle, free vibration; 

porosity. 

 

INTRODUCTION 

Functionally graded materials (FGMs) are a class of advanced composite materials. The 

mechanical properties of FGMs change continuously over the thickness of structures. In 

general, FGM is made from a mixture of ceramic and metal. In recent years, they have gained 

significant attention in many engineering fields such as automotive, civil engineering, 

aerospace, and nuclear engineering. Hence, due to the exotic properties of FGMs, many 

researchers have been captivated to investigate the bending behaviors, free vibration, and 

dynamic and buckling behaviors of FGM beams, plates, and shells. According to the literature, 

the analysis of FGM plates can be investigated with some different theories such as the classical 
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plate theory (CPT), the first-order shear deformation theory (FSDT) and higher-order shear 

deformation theory (HSDT). To remedy such defects, functionally graded materials (FGMs), 

within which material properties vary continuously, have been proposed.  

The concept of FGM was proposed in 1984 by a group of materials scientists, in Sendai, Japan, 

for thermal barriers or heat shielding properties. 

In recent years, extensive studies relevant to FG plates are carried out by using the classical 

plate theory (CPT) and first-order shear-deformation plate theory (FSDT). Despite the 

simplicity of the CPT (or the Kirchhoff–Love theory), the CPT disregards shear deformations 

and rotary inertia, resulting in unreliable results for thick and moderately thick plates. The 

FSDT (or Reissner–Mindlin plate theory) supports transverse shear effects by using a shear 

correction factor and hence is appropriate for analysis of both moderately thick and thin plates. 

However, the suitable value of the shear correction factor depends on the variation of Poisson’s 

ratio through the thickness of the plate, geometry, loading and boundary conditions. The higher-

order-shear-deformation theories (HSDTs) do not need a shear correction factor and provide 

the best accuracy compared with CPT and FSDT. 

It is grasped that in the process of FGM manufacturing, micro voids (known as porosities) can 

take place within the materials during the sintering action (Zhu, 2001; Li, 2003). This 

phenomenon is related to the large difference in solidification temperatures between material 

components (Zhu, 2001; Wang, 2017). Due to the importance of this subject, several studies 

have been carried out to explore the porosity effects. For example, Yahia (2015) studied the 

wave distribution of FG plates with porosities by utilizing various R-HSDTs with application 

in ultrasonic inspection techniques. A higher order shear deformation theory was used for the 

study on free vibration of micro beams made of porous graded materials by (Atmane, 2015). 

(Gupta and Talha, 2017) examined the effect of porosity on the frequency response of FG plates 

in the presence of a thermal effect by using a non-polynomial higher-order shear and normal 

deformation theory. 

However, in the manufacture of FGMs, micro-porosities or voids can occur in the materials 

during the sintering process. This is due to the large difference in solidification temperature 

between the material constituents (Zhu, 2001). Wattanasakulpong (2012) also gave a discussion 

of the porosities that occur within FGM specimens made by a sequential multi-step infiltration 

technique. Therefore, it is important to take into account the effect of porosity in the design of 

FGM structures subjected to static (Merdaci, 2018; 2019) and dynamic loads 

(Wattanasakulpong, 2014; Merdaci, 2019). Consequently, studies devoted to understanding the 

static and dynamic behavior of FGM material structures have been given more and more 

attention in recent years. 

This work aims at developing a new simple theory of high order shear deformation for the 

analysis of the free vibration of advanced composite plates, such as FGM plates by considering 

the porosities that can occur inside the materials with gradient properties (FG) at during their 

manufacture. The proposed theory contains four unknowns unlike the other theories, which 

contain five known at most, this theory it checks the boundary conditions without constraints 

on the upper and lower surfaces of the plate without the aid of shear correction factor. Analytical 

solutions are obtained for the FG pallet by the present theory and its accuracy is verified by 

comparing the results obtained with those reported in the literature. The effects of various 

parameters, such as thickness ratio and volume fraction of porosity on the free vibration of FG 

plates are all discussed. 
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 MATERIALS AND METHODS 
 

Material properties and mathematical model of advanced composite plates 

Advanced composite materials such as functionally graded materials can be produced by 

continuously varying the constituents of multi-phase materials in a predetermined profile. An 

FGM can be defined by the variation in the volume fractions (Fig.1). The material properties 

of the plate FG, such as Young’s modulus E, are assumed function of the volume fraction of 

constituent materials. The properties of the FGM vary continuously due to the progressive 

volume fraction of the constituents of the materials (ceramic and metal), generally in the 

direction of the thickness. In this paper, FGM plates with the power-law function (P-FGM) 

were considered (Fig.2). 

 
Fig. 1. Geometric configuration of plate FG with porosity. 
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Fig. 2. Variation of the volume fraction across the thickness of a plate. 

 

For the case of P-FGM plates, the materials properties of P-FGM depend on the volume 

fraction, which can be obtained as a power-law function as the following formula. Consider an 

imperfect FG with a volume fraction of porosity, ξ, (0 ≤ ξ ≤ 1) distributed uniformly between 

metal and ceramic, the law of the modified mixture proposed by (Wattanasakulpong and 

Ungbhakorn, 2014) is used as: 
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Where: Ec and Em are the corresponding properties of the ceramic and metal,  

“ρ” density of material, respectively,  

“P” is the volume fraction exponent, which takes values greater than or equal to zero.  

The above power-law assumption reflects a simple rule of mixtures used to obtain the effective 

properties of the ceramic-metal plate. The rule of mixtures applies only to the thickness 

http://www.ajrt.dz/
https://www.asjp.cerist.dz/en/PresentationRevue/538


16 
http://www.ajrt.dz/ 

https://www.asjp.cerist.dz/en/PresentationRevue/538 

direction. Note that the volume fraction of the metal is high near the bottom surface of the plate, 

and that of the ceramic is high near the top surface.  

 

Formulation of high order shear deformation theory  

 

Kinematics and constitutive equations 

Corresponding to the simple HSDT, the transverse displacement w is separated into two parts 

the bending constituent wb and the shear constituent ws. In the present analysis, the shear 

deformation plate theory is suitable for the displacements (Merdaci, 2011): 
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The strains associated with the displacements in equation 5 are: 
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The stress-strain relations for a linear elastic plate and isotropic, are written in the following:  
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Where: ( x , y
, xy

, yz
, yx

)  and ( x , y , xy
, yz

, yx
) are the stress and strain 

components, respectively.  

Using the material properties defined in equation (2g), the stiffness coefficients, Qij , can be 

expressed as: 
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Equations of motion 

The equations of motion can be quantified using the Hamilton’s principle that is: 

0

0

T

( U K )dt   
(3a) 

Where: U : variation of strain energy; K : variation of kinetic energy.  

The variation of strain energy of the plate is calculated by:  
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Where A is the top surface, and stress resultants N, M, and S are defined by:  
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The variation of kinetic energy of the plate can be written as:   
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Where dot-superscript convention indicates the differentiation with respect to the time variable 

t. 

(I1, I2, I3, I4, I5, I6) are mass inertias defined as: 
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Substituting the expressions for U and K from equations (3b) and (3d) into equation (3a), 

integrating the displacement gradients by parts and setting the coefficients δu, δv, δwb, and δws 

zero separately.  

Thus, one can obtain the equilibrium equations associated with the present shear deformation 

theory, 
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Analytical solutions for FG plates 
Rectangular plates are generally classified according to the type of support used. This paper is concerned 

with the exact solution for a simply supported FG plate. The following boundary conditions are imposed 

at the side edges: 
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Following the Navier solution procedure, we assume the following form of solution for (u,v,wb,ws) that 

satisfies the boundary conditions given in equation (4c).                                                                                                           
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Where: Umn, Vmn,Wbmn, and Wsmn are arbitrary parameters can be combined into a system of equations as:                                                                                                                                                
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Where: [K] and [M], stiffness and mass matrices, respectively, and represented as: 
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Where: am /   and bn /  , « m » and « n »are mode numbers.               
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RESULTS AND DISCUSSION 

In this section, various numerical examples are presented and discussed to verify the accuracy 

of the present theory in predicting the free vibration responses of simply supported FG plates. 

One type of FG plates of Al/ ZrO2 are used in this study. The material properties of FG plates 

are:  

• Metal (Aluminum (Al)): Em = 70 GPa; ν = 0.3;  ρ = 2702 kg/m3 . 

• Ceramic (Zirconia (ZrO2)): Ec = 211 GPa; ν = 0.3; ρ = 4500 kg/m3 . 

The different modes of displacement are presented (CPT: Classical plate theory, FSDPT: First-

order shear deformation theory, HSDPT: Higher-order shear deformation plate theory); a 

comparison with the numerical case studies is used to check the accuracy of the present analysis. 

Unless otherwise has been stated, the following relations have been used for presentations of 

non-dimensional natural frequencies. The material properties of the plate FG are supposed to 

vary according to the thickness of the plate according to a simple law of power P-FGM. The 

lower part of the FG plate is rich in Metal (Aluminum, Al), while the upper surface is rich in 

ceramics (Zirconia , ZrO2). For convenience, the non-dimensional parameter used in this study 

is: 

ˆ h
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The non-dimensionalized natural frequencies of general rectangular isotropic and FG Al/ZrO2 

plates are considered for comparison. In table.1 compares natural frequencies obtained by the 
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present theory for a thick square isotropic plate with those given by ( Reddy and Phan, 1985) 

based on HSDPT (Reddy and Phan, 1985) , by (Whitney and Pagano, 1970) based on first shear 

deformation theory FSDPT and well-known (Love–Kirchhoff, 1950) plate theory or (CPT) in 

which the transverse shear strain is neglected. Comparison of results shows that the present 

theory, which takes into account both the transverse shear and transverse normal deformation, 

predicts the natural frequencies with the same degree of accuracy as that of solutions at lower 

as well as higher modes. However, the three other theories (Love–Kirchhoff, 1950; Reddy and 

Phan, 1985; Whitney and Pagano, 1970), which neglect the thickness stretching effect (ɛz =0), 

slightly underestimate frequency compared to the present theory. 

 

Table 1. Non-dimensional natural frequencies ω̂  for simply supported isotropic square plate 

(a/b=1, a/h=10) and the porosity coefficients  ξ=0. 

m n CPT FSDPT HSDPT Present 

1 1 0.0955 0.0930 0.0931 0.0930 
1 2 0.2360 0.2219 0.2222 0.2220 
2 2 0.3732 0.3406 0.3411 0.3406 
1 3 0.4629 0.4149 0.4158 0.4151 
2 3 0.595 1 0.5206 0.5221 0.5208 
3 3 0.8090 0.6834 0.6862 0.6840 
2 4 0.8926 0.7446 0.7481 0.7454 
1 5 1.1365 0.9174 0.9230 0.9187 
4 4 1.3716 1.0764 1.0847 1.0785 

 

It can be concluded that the present theory is not only accurate but also efficient and simple in 

predicting the free vibration responses of plates FG non-porous (ξ=0.0). 

From the curves presented in figure 3, it can be noted that more than the parameter of the power 

index of the material "P" is high, more than the fundamental frequency in the porous (ξ=0.1 

and 0.2) and non-porous(ξ=0.0) plate FG structures is decreased, which whatever the number 

of waves. However, increasing the porosity factor causes an increase in the frequency. 

Therefore, the maximum frequency is obtained for a ceramic plate (P = 0). 

The non-dimensional fundamental natural frequency v of simply supported rectangular FG 

plates (b=2a) and power law index P for various values of side-to-thickness ratios (a/h) and 

different porosity factor (ξ =0.0 ; 0.10 and 0.20) are plotted in figure 4 based on the present 

high order shear deformation theory.  As shown, the frequency decreases significantly with the 

increase of P. It is, basically, attributable to the fact that Young’s modulus of ceramic is higher 

than metal. The variation of frequency parameter with aspect ratios (b/a) of FG plates using the 

present theory is plotted in figure 5. 
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Fig. 3. Variation of the fundamental frequency ω of plate FG porous according to the material 

power index “P”. 
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Fig. 4. Fundamental natural frequency ω  of simply supported FG rectangular plates (b=2a) as 

function of power law index “P” for different porosity factor (ξ). 
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Fig. 5. Natural frequency of simply supported FG plates (a/h=10) as function of aspect ratio 

(b/a) for different power law index “P” and different porosity factor (ξ). 
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CONCLUSION 

In this work, the analysis of the free vibration of advanced composite plates such as functionally 

graded plates with porosities is examined by a new simple theory of high order shear 

deformation. Herein, a summary of most significant results is presented as follows:  

 This theory satisfies the nullity of the stresses at the upper and lower surfaces of the 

plate without using the shear correction factor.  

 The law of the modified mixture covering the porosity phases is used to roughly describe 

the properties of plate FG with porosity. 

 The equations of motion are derived from the principle of virtual works and the principle 

of Hamilton.  

 The effects of various parameters, such as the thickness ratio and the volume fraction 

of the porosity on the free vibration of FG plates are all discussed.  

 The present theory gave control results that can be used to evaluate various plate 

theories, and to compare with the results obtained by another (Love–Kirchhoff, 1950; 

Reddy and Phan, 1985 and Whitney and Pagano, 1970).  

 The present theory of plate FG proposed is accurate and simple for the resolution of the 

mechanical behavior of FG plates with porosity. 
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