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Abstract. This work consists of the analysis of the bending responses of porous 

functionally graded (FG) rectangular plates according to high order shear deformation 

theory. The proposed theory contains four unknowns unlike the other theories which 

contain five unknowns, but it checks the boundary conditions without constraints on the 

upper and lower plate surfaces. Both the effect of shear strain and normal deformation 

are included in the present theory and so it does not need any shear correction factor. 

The equilibrium equations according to the porous FG plates are derived. The solution 

of the problem is derived by using Navier’s technique. Numerical results have been 
reported, and compared with those available in the open literature for non-porous plates. 

Effects of the exponent graded and porosity factors are investigated. 

Keywords. Functionally graded; Rectangular plates; Porosity; High order theory, Shear-

deformation. 

 

INTRODUCTION 

Functionally graded materials (FGMs) are known for their tailor-made properties which are 

achieved through the continuous gradation of material phase from one surface to another. Due 
to FGMs being involved in the classification of composite materials, the material 

compositions of FGMs are assumed to vary smoothly and continuously throughout the 

gradient directions. The earliest FGMs were introduced by Japanese scientists in the mid-

1980s as ultra-high temperature resistant materials for aerospace applications. Recently, these 

materials have found other uses in electrical devices, energy transformation, biomedical 

engineering, optics, etc. (Delfosse, 1998). At the introduction of FGMs, most of the essential 

concepts and information about the materials were largely unknown outside of Japan. 

However, in the manufacture of FGM, porosities may occur in the materials during the 

sintering process. This is due to the large difference in coagulation temperature between the 
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components of the material (Zhu,  2001). Wattanasakulpong et al. (2012) discussed the 

porosities that occur in lateral FGM samples made with a multistage sequential filtration 
technique. So, it is important to take under consideration the porosity effect when designing 

FG components under the effect of dynamic loadings. 

On the basis of open literature, it seems that many investigators have paid their attentions on 

discussing analyses of FGM structures with porosities. Most of these investigations are 

concerned with vibration behavior of FG porous structures (Rezaei, 2015; Behravan, 2015; 

Rezaei, 2016; Shafiei, 2016; Chen, 2016; Ebrahimi, 2016; Shafiei, 2017; Ebrahimi, 2017; 

Rezaei, 2017; Rezaei, 2017; Lhoucine, 2017; Wang, 2017; Ghadiri, 2017; Al Rjoub, 2017; 

Ghorbanpour et al., 2018; Barati, 2017; Wu, 2018; Arshid, 2018; Chen, 2018; Li, 2018; 

Barati, 2018; Ebrahimi, 2018). Additional researchers are restricted their attention to the 

buckling (Jabbari, 2014; Khorshidvand, 2014; Mojahedin, 2014; Farzaneh, 2015; Barati, 

2016; Mojahedin, 2016; Feyzi, 2017; Rezaei, 2017; Cong, 2018) or vibration and buckling 
(Shojaeefard, 2017; Chen, 2017; Kitipornchai, 2017; Yang, 2018) of many porous structures.  

In the past three decades, researches on plates have received great attention, and a variety of 

plate theories has been proposed, in which the plates are generally subjected to various types 

of mechanical loads. In particular, knowledge pertaining to bending is essential for optimal 

design of structures. For example, our numerical examples clearly show that with a suitable 

volume fraction exponent “P” for FGM, one could achieve an optimal design for FGM plates. 

It is worthwhile to present some developments in the plate theory. The classical plate theory 

(CPT), which neglects the transverse shear effects, provides reasonable results for thin plates; 

however, it underpredicts deflections and overpredicts frequencies as well as buckling loads 

for moderately thick plates. For composite plates and shells, the shear deformation, 
extensional-bending and bending-shear couplings play important role in the failure and 

instability of structures (Zhang, 1991; Zhang, 1994; Shen, 1990). Therefore, in order to obtain 

accurate and reliable predictions of responses of composite plates, it is necessary to develop a 

new engineering theory. Many shear deformation theories accounting for transverse shear 

effects have been developed to overcome the deficiencies of the CPT. The first-order shear 

deformation theories (FSDPTs) based on Reissner and Mindlin accounted for the transverse 

shear effects bymeans of linear variation of in-plane displacements across the thickness. Since 

FSDPT violates the equilibrium conditions at the plate’s top and bottom faces, the shear 

correction factors are needed to rectify the unrealistic variation of the shear strain/stress across 

the thickness. In order to overcome the limitations of FSDPT, higher-order shear deformation 

theories (HSDPTs) involving higher-order terms in Taylor’s expansions of the displacements 
in the thickness coordinate were developed. A good review of these theories for the analysis 

of laminated composite plates. Recently, a two variable refined plate theory was developed by 

(Kim et al., 2009) for laminated composite plates, the most interesting feature of which is that 

it does not require shear correction factor, and has strong similarities to the CPT in such 

respects as governing equation, boundary conditions and moment expressions. 

The objective of this article is to present the bending behavior of FG plates having porosities. 

The plate may be either perfectly porous homogeneous or has a perfect homogeneity shape 

according to the values of the volume fraction of voids (porosity) or the graded factors. The 

plate is assumed isotropic at any point within the plate, with its Young’s modulus varying 

across its thickness in accord with a power-law in terms of the volume fractions of the plate 
constituents while the poisson’s ratio remaining constant. The present theory satisfies 

equilibrium conditions at the plate’s top and bottom faces without using shear correction 

factors. Navier solution is used to obtain closed-form solutions for simply supported FG 

plates. Several important aspects, i.e., aspect ratios, thickness ratios, exponent graded factor as 

well as porosity volume fraction, which affect deflections and stresses, are taken into 

investigation. 
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FORMULATION OF THE PROBLEM 

 

Structural Model 

Consider a FG thick rectangular plate of length a, width b and thickness h made of 

functionally graded material as shown in Fig.1 together with the adopted coordinate system. 

The material properties of the FG plate, such as Young’s modulus E, are assumed to be 

function of the volume fraction of constituent materials.  

 

 
Fig. 1. Geometry and coordinates of the FG porous plate. 

 

Let the FGM plate be subjected to a transverse load q(x,y), and a rectangular Cartesian 

coordinate of x and y is introduced for the deformation analysis of the plate. The plate under 

study is bounded by the co-ordinate planes x = 0, a and y = 0, b. The reference surface is the 

middle surface of the plate defined by z =0, and z denotes the thickness co-ordinate measured 

from the un-deformed middle surface. Let the present plate is converted from lower to upper 

surfaces according to an exponential or polynomial laws. We will consider firstly a non-

homogeneity material with a porosity volume function, α (0 ≤ α ≤ 1). In such a way, the 

efficient material properties, as Young’s modulus, can be expressed as: 
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where P (P ≥ 0) represents a factor that points out the material variation through the thickness. 

Note that the plate is perfectly porous homogeneous when k equals zero and it gets the perfect 

homogeneity shape when P = α = 0. 

The functional relationship between E(z) for the ceramic and metal FGM plate is assumed to 
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where Ec and Em are the corresponding properties of the ceramic and metal, respectively, and 

“P” is the volume fraction exponent which takes values greater than or equal to zero. The 

above power-law assumption reflects a simple rule of mixtures used to obtain the effective 

properties of the ceramic-metal plate. The rule of mixtures applies only to the thickness 

direction. Note that the volume fraction of the metal is high near the bottom surface of the 

plate, and that of the ceramic is high near the top surface. Furthermore, Eq. (2) indicates that 
the bottom surface of the plate (z = −h/2) is metal whereas the top surface (z = h/2) of the 

plate is ceramic. 

 

Assumptions of the Present Plate Theory 

- The displacements are small in comparison with the plate thickness, and, therefore, strains 

involved are infinitesimal. 
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- The transverse displacement w includes two components of bending wb, and shear ws. These 

components are functions of coordinates x, y only. 
w(x, y, z) = wb(x, y) + ws(x, y) (3) 

- The transverse normal stress σz is negligible in comparison with in-plane stresses σx and σy. 

- The displacements u in x-direction and v in y-direction consist of extension, bending, and 

shear components. 

U = u0 + ub + us, V = v0 + vb + vs (4) 

The bending components ub and vb are assumed to be similar to the displacements given by 

the classical plate theory. Therefore, the expression for ub and vb can be given as 
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The shear components « us» and «ns»  give rise, in conjunction with «ws», to the parabolic 

variations of shear strains «gxz»,«gyz» and hence to shear stresses «txz», « tyz» through the 

thickness of the plate in such a way that shear stresses «txz», « tyz» are zero at the top and 

bottom faces of the plate. Consequently, the expression for « su » and « sv »can be given as 
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DISPLACEMENT FIELD AND CONSTITUTIVE EQUATIONS 

In the present analysis, the shear deformation plate theory is suitable for the displacements 

(Merdaci et al 2009). 
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(7) 

Note that the displacement field of the classical plate theory (CPT) will be given by setting      

f(z) = 0 , first-order shear deformation theory (FSDPT) will be given by setting  f(z) = z 

.However, the displacement fields of the higher-order (HSDPT) , exponential (ESDPT) and 

sinusoidal (SSDPT) plate theories will be given, respectively, by setting: 
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However, in the present theory one considers a new perception of f(z) (Merdaci et al 2009) as: 
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The strains associated with the displacements in Eq. (8) are: 
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For elastic and isotropic FGMs, the constitutive relations can be written as 
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where ( x , y
, xy

, yz
, yx

)  and ( x , y
, xy

, yz
, yx

) are the stress and strain 

components, respectively. Using the material properties defined in Eq.(1), the stiffness 

coefficients, ijQ
 , can be expressed as 
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EQUILIBRIUM EQUATIONS 

The static equations can be obtained by using the principle of virtual displacements. It can be 

stated in its analytical form as 
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where   is the top surface.  

By substituting Eqs. (10) and (11) into Eq. (13) and integrating through the thickness of the 
plate, Eq. (14) can be rewritten as 
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Where the stress resultants N, M, and S are defined by: 
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By substituting Eq. (11) into Eq. (15) and integrating through the thickness of the plate, the 

stress resultants are given as: 
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where Aij , Bij , etc. are the plate stiffness defined by 
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The governing equations of equilibrium can be derived from Eq.(14) by integrating the 

displacement gradients by parts and setting the coefficients of δu, δv, δwb, and δws zero 
separately. Thus, one can obtain the equilibrium equations associated with the present shear 

deformation theory, 
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(19)                  

Substituting Eq. (16) into Eq. (19), we obtain the following equations 
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ANALYTICAL SOLUTIONS FOR FG PLATES 

The following simply-supported boundary conditions are imposed at the side edges of the FG 

plate: 
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The external force according to Navier’s solution can be expressed as 
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Where, am / =  and bn / = , « m » and « n »are mode numbers. For the case of a 

sinusoidally distributed load, we have   
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Where, q0 represents the intensity of the load at the plate center.  
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where Umn, Vmn,Wbmn, and Wsmn are arbitrary parameters. Eq.(14) in combination with Eq. (19) 

can be combined into a system of first order equations as:  
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Where,    and  F denotes the columns 
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and the elements aij = aji of the coefficient matrix [K]. The elements of the symmetric matrix 

[K] presented in Eq. (26) are given by 
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NUMERICAL RESULTS AND DISCUSSIONS 

In this section, the present refined theory is applied to the bending analysis of FG plates. The 

Poisson’s ratio is fixed at ν = 0.3, and comparisons are made with available solutions. 
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Numerical case studies are used to verify the accuracy of the present analysis. The FG plate is 

taken to be made of aluminum and alumina with the following material properties: 
- Metal (Aluminum, Al): Em = 70 GPa; ν = 0.3. 

- Ceramic (Alumina, Al2O3): Ec = 380 GPa; ν = 0.3. 

The various non-dimensional parameters used are: 
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hzz /=  
As the first example, the deflections and the dimensionless stresses of the square FG plate (a/h 

= 10) for different values of the volume fraction P.  The present predictions (present higher-

order shear deformation theories) are compared with the first-order shear deformation theory 

(FSDPT), higher-order (HSDPT), Exponential (ESDPT) and sinusoidal (SSDPT). The 

inclusion of the porosity factor α is involved in Table 1, 2 and 3. The dimensionless in-plane 

normal stress xσ  and transverse normal stress xzτ  are reported in Table 2 and 3. The stresses 

are compared with those of other theory. Generally, the present theory (with α = 0) gives a 

good prediction of inplane normal stress xσ as compared with different models (ESDPT, 

HSDTT and SSDPT). However, the transverse normal stress xzτ  is in good agreement with the 

SSDPT solution. It should be noted that all theory (FSDPT, ESDPT, HSDTT and SSDPT) 

were obtained on the basis of sinusoidal variation of both in-plane and transverse 

displacements across the thickness. It can be seen that  SSDPT presented sinusoidal theory 

with five unknowns (Touratier, 1991). The present non-porous results (α = 0) almost more 

accurate than those generated by other theories. Also, the present results are compared well 

with those of other solution even for thicker plates. This points to the use of new assumption 

given in Eq. (7) has a maximal effect on the accuracy of the results. The deflection for 
(FSDPT, ESDPT, HSDPT and SSDPT) increases with the increase in the desired fraction, as 

it is found that the error percentage of FSDPT is larger compared to the other modal (ESDPT, 

HSDPT and SSDPT). It can be observed that the results obtained by the present models are 

identical to those of the sinusoidal shear deformation plate theory (SSDPT) and the higher-

order shear deformation plate theory (HSDPT), respectively. In general, the fully ceramic 

(P=0) plates give the smallest deflections and shear stresses and the largest axial stresses. As 

the volume fraction exponent increases for FG plates, the deflection, axial stress, and shear 

stress will increase. 

 

Table 1. Comparative study of deflections of FG plate for different volume fraction value and 

(α = 0). 

P FSDPT ESDPT HSDPT SSDPT Present 

0 0.07791 0.07788 0.0779 0.0779 0.0779 

1 0.19703 0.19597 0.19608 0.19603 0.19603 

2 0.2866 0.28465 0.2849 0.28478 0.28478 

3 0.3385 0.33586 0.33624 0.33606 0.33606 

4 0.36737 0.36426 0.36474 0.36451 0.36451 

5 38402 0.38061 0.38116 0.3809 0.3809 



 

25
 

10 0.40768 0.40779 0.40798 0.40709 0.40702 

Metal 0.41919 0.42179 0.42163 0.42172 0.4229 

 

Table 2. Comparative study of dimensionless axial stress of FG plate for different volume 

fraction value and (α = 0). 

P FSDPT ESDPT HSDPT SSDPT Present 

0 1.97576 1.99660 1.99432 1.99550 1.99550 

1 0.93765 0.94442 0.94369 0.94407 0.94407 

2 1.36934 1.37738 1.37661 1.37702 1.37702 

3 1.61758 1.62625 1.62551 1.62590 1.62590 

4 1.75384 1.76299 1.76229 1.76266 1.76266 

5 1.83096 1.84056 1.83988 1.84025 1.84025 

10 1.94563 1.95112 1.95074 1.95096 1.95702 

Metal 1.97576 1.98428 1.98353 1.98392 1.99550 

 

Table 3. Comparative study of dimensionless transverse shear stresses of FG plate for 

different volume fraction value and (α = 0). 

P FSDPT ESDPT HSDPT SSDPT Present 

0 0.15915 0.25379 0.23857 0.24618 0.24618 

1 0.26879 0.34769 0.33432 0.34102 0.34102 

2 0.34891 0.41915 0.40918 0.41426 0.41426 

3 0.41002 0.47831 0.47132 0.47501 0.47501 

4 0.45817 0.53051 0.52540 0.52826 0.52826 

5 0.49708 0.57762 0.57336 0.57590 0.57590 

10 0.61598 0.70958 0.69891 0.70450 0.75375 

Metal 0.15915 0.20739 0.19984 0.20359 0.24618 

 
Finally, additional results of deflections and stresses are reported in tables 4, 5 and 6 for 

porous FG plate (α = 0, 0.1 and 0.2). The inclusion of porosity parameter increases the 

deflection and transverse shear stresses and decreases the axial stress for different values of 

the volume fraction graded factor P. In general, the present theory gives comparable results 

with the inclusion of the porosity factor (α =0, 0.1 and 0.2).It is clear that this factor has 

significant effect on the deflections and stresses. The inclusion of porosity parameter 

increases the deflection and transverse shear stresses and decreases the axial stress for 

different values of the volume fraction graded factor P.     

 

Table 4. Effects of the volume fraction and porosity coefficient of deflections in a square FG-

plate subjected to sinusoidally distributed load. 

 

Table 5. Effects of the volume fraction and porosity coefficient on the dimensionless axial 

stress of the FG plate. 

Theory α P=0 P=1 P=2 P=3 P=4 P=5 P=10 Metal 

Present α=0.0 1.99550 0.94407 1.37702 1.62591 1.76267 1.84026 1.95703 1.99550 

Theory α P=0 P=1 P=2 P=3 P=4 P=5 P=10 Métal 

Present 

α=0.0 0.07790 0.19604 0.28479 0.33606 0.36452 0.38090 0.40703 0.42290 

α=0.1 0.08122 0.21876 0.3573 0.40946 0.45243 0.47780 0.51881 0.34624 

α=0.2 0.08482 0.24749 0.40910 0.52436 0.59694 0.64172 0.71626 0.29310 



 

26
 

α=0.1 1.99550 0.82120 1.26609 1.54558 1.70732 1.80177 1.94743 1.99550 

α=0.2 1.99550 0.66571 1.10626 1.41992 1.61657 1.73700 1.93093 1.99550 

 

Table 6. Effects of volume fraction and porosity coefficient on the dimensionless transverse 

shear stresses in a square FG-plate subjected to sinusoidally distributed load. 

Theory α P=0 P=1 P=2 P=3 P=4 P=5 P=10 Metal 

Present 

α=0.0 0.24618 0.34103 0.41426 0.47502 0.52827 0.57591 0.75376 0.24618 

α=0.1 0.24618 0.34764 0.42864 0.49672 0.55720 0.61219 0.82651 0.24618 

α=0.2 0.24618 0.35539 0.44641 0.52408 0.59391 0.65850 0.92395 0.24618 
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Fig.2. Displacement variation as a function of the power index “P” and the volume fraction of 

porosity α of a FGM plate 
 

The effects of the material index “P” on the adimensional displacement of the perfect and 

imperfect FG plate for different values of the thickness ratio (a/h = 5, a/h = 10, a/h = 20) of 

the plate and different values of porosity coefficient using the present high order shear theory 

are illustrated in Figures 2 and 3 respectively. It should be noted that the dimensionless 

displacement increases with the increase of the value of the power law index for the perfect 

and imperfect FGM plate and that for the three thickness ratios. Displacements are higher for 

metal plates while displacements are lower for all-ceramic plates (P = 0). There is a rapid 

variation in displacements for the low values of the ratio a/h (that is, for a / h >20) where the 

plate is considered thick. Exceeding this ratio of the material index P = 3, the displacements 
keep a more or less constant look and this for the different values of coefficient of the 

porosity. 
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Fig.3. Variation of dimensionless displacement as a function of the thickness ratio a/h for the 

different values of porosity factor α. 

 

Figure 3, shows the increase in dimensionless displacements, which is explained by the 

influence of material stiffness, ie an increase in the value of porosity (α), leads to a decrease 

in the modulus of elasticity of the material plate. An increase in the side-to-thickness ratios 

(a/h) leads to an increase in a dimensional displacements. We can also say that the thickness 

ratio (a/h) has a considerable effect on dimensionless displacement. 
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Fig.4. Variation of adimensional displacement as a function of the geometric ratio a/b for the 

different values of porosity factor α. 

 

In figure 4, we study a dimensional displacement variation as a function of the geometric ratio 

(a/b) for the different values of porosity coefficient with a ratio of equal thickness (a/h = 10) 

and a material index P = 2. Decreasing of said ratio makes lowering of displacement. 
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Fig.5. Through-the-thickness distribution of axial stress xσ of FGM plates for different porosity 

factor α. 

In figure 5, contains the variation of the axial stress across the plate thickness in FG. The 

effect of the porosity of the FGM plate was taken into account by means of the introduction of 

the coefficient (α). Three values are therefore retained (α = 0, 0.1, and 0.2). It can be seen that 

the increase in the index of porosity (α) leads to an increase in stresses. This can be justified 

by the fact that the porosity reduces the rigidity of the plate. The stresses are tensile above the 

median plane and compression below the median plane. It is important to observe that the 

maximum stress depends on the value of the exponent of the volume fraction P.  The in-plane 
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normal stresses, are compressive throughout the plate up to 3 5.z = , and become tensile 

afterwards. The maximum compressive stresses occur at certain point on the bottom surface 

and the maximum tensile stresses occur, of course, at certain point on the top surface of the 

FG plate. 

 

 

 

 

 

 

 

 

 

 

Fig.6. Through-the-thickness distribution of transverse shear stress xzτ of FGM plates for 

different porosity factor α. 

In figure 6, shear stresses were plotted through the transverse thickness distribution. It can be 

seen from this figure that the porosity effect has a remarkable direct influence which occurs at 

a point on the median plane of the FG plate and which decreased the transverse shear stress. 

 

CONCLUSION  

A new simple theory of high order shear and normal deformation theory is developed for 

functionally graded plates. This theory satisfies the nullity of the shear stresses at the upper 

and lower surfaces of the plate without using the shear correction factor contrary to other 

theories. The law of the modified mixture covering the porosity phases is used to roughly 
describe the properties of FG-plates with porosity. The principle of virtual displacements is 

used to derive the governing equations and boundary conditions. Then, analytical solutions 

for functionally graded porous rectangular plates are presented. The inclusions of graded and 

porosity parameters are investigated. The effects of various parameters, such as thickness 

ratio, power index (exponent of the volume fraction) “P ”, and volume fraction of porosity on 

the flexion of FG plates are all discussed. Many validations examples are reported and 

numerical results of the present refined plate theory are accurate in predicting the bending 

response of non-porous plates  (α=0). In addition, the present theory gave control results that 

can be used to evaluate various plate theories, and also to compare with the results obtained 

by another solution (FSDPT, ESDPT, SSDPT and HSDPT). From this work, it can be said 

that the present and simple theory for the resolution of the mechanical behavior of FG plates 
with porosity that presses manufacturing defects. 
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