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Abstract. This work consists of the analysis of the bending responses of porous 

functionally graded (FG) rectangular plates according to high order shear deformation 

theory. The proposed theory contains four unknowns unlike the other theories which 

contain five unknowns, but it checks the boundary conditions without constraints on the 

upper and lower plate surfaces. Both the effect of shear strain and normal deformation 
are included in the present theory and so it does not need any shear correction factor. The 

equilibrium equations according to the porous FG plates are derived. The solution of the 

problem is derived by using Navier’s technique. Numerical results have been reported, 

and compared with those available in the open literature for non-porous plates. Effects of 

the exponent graded and porosity factors are investigated. 

Keywords: functionally graded; rectangular plates; porosity; high order theory, shear-

deformation. 

 

INTRODUCTION 

Functionally graded materials (FGMs) are known for their tailor-made properties which are 

achieved through the continuous gradation of material phase from one surface to another. Due 

to FGMs being involved in the classification of composite materials, the material compositions 

of FGMs are assumed to vary smoothly and continuously throughout the gradient directions. 

The earliest FGMs were introduced by Japanese scientists in the mid-1980s as ultra-high 

temperature resistant materials for aerospace applications. Recently, these materials have found 

other uses in electrical devices, energy transformation, biomedical engineering, optics, etc. 

(Suresh, 1998). At the introduction of FGMs, most of the essential concepts and information 

about the materials were largely unknown outside of Japan. However, in the manufacture of 

FGM, porosities may occur in the materials during the sintering process. This is due to the large 

difference in coagulation temperature between the components of the material (Zhu,  2001). 

Wattanasakulpong et al. (2012) discussed the porosities that occur in lateral FGM samples made 
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with a multistage sequential filtration technique. So, it is important to take under consideration 

the porosity effect when designing FG components under the effect of dynamic loadings. 

On the basis of open literature, it seems that many investigators have paid their attentions on 

discussing analyses of FGM structures with porosities. Most of these investigations are 

concerned with vibration behavior of FG porous structures (Rezaei, 2015; Behravan, 2015; 

Rezaei, 2016; Shafiei, 2016; Chen, 2016; Ebrahimi, 2016; Shafiei, 2017; Ebrahimi, 2017; 

Rezaei, 2017; Rezaei, 2017; Lhoucine, 2017; Wang, 2017; Ghadiri, 2017; Al Rjoub, 2017; 

Ghorbanpour, 2017; Barati, 2017; Wu, 2018; Arshid, 2018; Chen, 2018; Li, 2018; Barati, 2018; 

Ebrahimi, 2018). Additional researchers are restricted their attention to the buckling (Jabbari, 

2014; Khorshidvand, 2014; Mojahedin, 2014; Farzaneh, 2015; Barati, 2016; Mojahedin, 2016; 

Feyzi, 2017; Rezaei, 2017; Cong, 2018) or vibration and buckling (Shojaeefard, 2017; Chen, 

2017; Kitipornchai, 2017; Yang, 2018) of many porous structures.  

In the past three decades, researches on plates have received great attention, and a variety of 

plate theories has been proposed, in which the plates are generally subjected to various types of 

mechanical loads. In particular, knowledge pertaining to bending is essential for optimal design 

of structures. For example, our numerical examples clearly show that with a suitable volume 

fraction exponent “P” for FGM, one could achieve an optimal design for FGM plates. 

It is worthwhile to present some developments in the plate theory. The classical plate theory 

(CPT), which neglects the transverse shear effects, provides reasonable results for thin plates; 

however, it underpredicts deflections and overpredicts frequencies as well as buckling loads for 

moderately thick plates. For composite plates and shells, the shear deformation, extensional-

bending and bending-shear couplings play important role in the failure and instability of 

structures (Zhang, 1994; Shen, 1990). Therefore, in order to obtain accurate and reliable 

predictions of responses of composite plates, it is necessary to develop a new engineering 

theory. Many shear deformation theories accounting for transverse shear effects have been 

developed to overcome the deficiencies of the CPT. The first-order shear deformation theories 

(FSDPTs) based on Reissner and Mindlin accounted for the transverse shear effects bymeans 

of linear variation of in-plane displacements across the thickness. Since FSDPT violates the 

equilibrium conditions at the plate’s top and bottom faces, the shear correction factors are 

needed to rectify the unrealistic variation of the shear strain/stress across the thickness. In order 

to overcome the limitations of FSDPT, higher-order shear deformation theories (HSDPTs) 

involving higher-order terms in Taylor’s expansions of the displacements in the thickness 

coordinate were developed. A good review of these theories for the analysis of laminated 

composite plates. Recently, a two variable refined plate theory was developed by (Kim et al., 

2009) for laminated composite plates, the most interesting feature of which is that it does not 

require shear correction factor, and has strong similarities to the CPT in such respects as 

governing equation, boundary conditions and moment expressions. 

The objective of this article is to present the bending behavior of FG plates having porosities. 

The plate may be either perfectly porous homogeneous or has a perfect homogeneity shape 

according to the values of the volume fraction of voids (porosity) or the graded factors. The 

plate is assumed isotropic at any point within the plate, with its Young’s modulus varying across 

its thickness in accord with a power-law in terms of the volume fractions of the plate 

constituents while the poisson’s ratio remaining constant. The present theory satisfies 

equilibrium conditions at the plate’s top and bottom faces without using shear correction 

factors. Navier solution is used to obtain closed-form solutions for simply supported FG plates. 

Several important aspects, i.e., aspect ratios, thickness ratios, exponent graded factor as well as 

porosity volume fraction, which affect deflections and stresses, are taken into investigation. 
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FORMULATION OF THE PROBLEM 

 

Structural Model 

Consider a FG thick rectangular plate of length a, width b and thickness h made of functionally 

graded material as shown in Fig.1 together with the adopted coordinate system. The material 

properties of the FG plate, such as Young’s modulus E, are assumed to be function of the 

volume fraction of constituent materials.  

 
Fig. 1. Geometry and coordinates of the FG porous plate. 

 

Let the FGM plate be subjected to a transverse load q(x,y), and a rectangular Cartesian 

coordinate of x and y is introduced for the deformation analysis of the plate. The plate under 

study is bounded by the co-ordinate planes x = 0, a and y = 0, b. The reference surface is the 

middle surface of the plate defined by z =0, and z denotes the thickness co-ordinate measured 

from the un-deformed middle surface. Let the present plate is converted from lower to upper 

surfaces according to an exponential or polynomial laws. We will consider firstly a non-

homogeneity material with a porosity volume function, α (0 ≤ α ≤ 1). In such a way, the efficient 

material properties, as Young’s modulus, can be expressed as: 
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where P (P ≥ 0) represents a factor that points out the material variation through the thickness. 

Note that the plate is perfectly porous homogeneous when k equals zero and it gets the perfect 

homogeneity shape when P = α = 0. 

The functional relationship between E(z) for the ceramic and metal FGM plate is assumed to 
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where Ec and Em are the corresponding properties of the ceramic and metal, respectively, and 

“P” is the volume fraction exponent which takes values greater than or equal to zero. The above 

power-law assumption reflects a simple rule of mixtures used to obtain the effective properties 

of the ceramic-metal plate. The rule of mixtures applies only to the thickness direction. Note 

that the volume fraction of the metal is high near the bottom surface of the plate, and that of the 

ceramic is high near the top surface. Furthermore, Eq. (2) indicates that the bottom surface of 

the plate (z = −h/2) is metal whereas the top surface (z = h/2) of the plate is ceramic. 

 

Assumptions of the Present Plate Theory 

- The displacements are small in comparison with the plate thickness, and, therefore, strains 

involved are infinitesimal. 

- The transverse displacement w includes two components of bending wb, and shear ws. These 

components are functions of coordinates x, y only. 

w(x, y, z) = wb(x, y) + ws(x, y) (3) 
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- The transverse normal stress σz is negligible in comparison with in-plane stresses σx and σy. 

- The displacements u in x-direction and v in y-direction consist of extension, bending, and 

shear components. 

U = u0 + ub + us, V = v0 + vb + vs (4) 

The bending components ub and vb are assumed to be similar to the displacements given by 

the classical plate theory. Therefore, the expression for ub and vb can be given as 
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The shear components « us» and «ns»  give rise, in conjunction with «ws», to the parabolic 

variations of shear strains «gxz»,«gyz» and hence to shear stresses «txz», « tyz» through the 

thickness of the plate in such a way that shear stresses «txz», « tyz» are zero at the top and bottom 

faces of the plate. Consequently, the expression for « su » and « sv »can be given as 
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DISPLACEMENT FIELD AND CONSTITUTIVE EQUATIONS 

In the present analysis, the shear deformation plate theory is suitable for the displacements 

(Merdaci et al 2011). 
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Note that the displacement field of the classical plate theory (CPT) will be given by setting      

f(z) 0 , first-order shear deformation theory (FSDPT) will be given by setting  f(z) z 
.However, the displacement fields of the higher-order (HSDPT) , exponential (ESDPT) and 

sinusoidal (SSDPT) plate theories will be given, respectively, by setting: 
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However, in the present theory one considers a new perception of f(z) (Merdaci et al 2011) as: 











h

zh
zzf

 
sin)(



   (8) 

The strains associated with the displacements in Eq. (8) are: 
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where 
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For elastic and isotropic FGMs, the constitutive relations can be written as 
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) are the stress and strain components, 

respectively. Using the material properties defined in Eq.(1), the stiffness coefficients, ijQ
 , can 

be expressed as 
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EQUILIBRIUM EQUATIONS 

The static equations can be obtained by using the principle of virtual displacements. It can be 

stated in its analytical form as 
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where   is the top surface.  

By substituting Eqs. (10) and (11) into Eq. (13) and integrating through the thickness of the 

plate, Eq. (14) can be rewritten as 
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Where the stress resultants N, M, and S are defined by: 
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By substituting Eq. (11) into Eq. (15) and integrating through the thickness of the plate, the 

stress resultants are given as: 
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Where Aij , Bij , etc. are the plate stiffness defined by 
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The governing equations of equilibrium can be derived from Eq.(14) by integrating the 

displacement gradients by parts and setting the coefficients of δu, δv, δwb, and δws zero 

separately. Thus, one can obtain the equilibrium equations associated with the present shear 

deformation theory, 
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Substituting Eq. (16) into Eq. (19), we obtain the following equations 
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ANALYTICAL SOLUTIONS FOR FG PLATES 

The following simply-supported boundary conditions are imposed at the side edges of the FG 

plate: 
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and 0,x a            (21a)     
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The external force according to Navier’s solution can be expressed as 





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) sin() sin(),(

m n

mn yxqyxq 

                                            (22) 

Where, am /   and bn /  , « m » and « n »are mode numbers. For the case of a sinusoidally 

distributed load, we have   

1 nm , et 011 qq                                                                  (23) 

Where, q0 represents the intensity of the load at the plate center.  



53 
 

Following the Navier solution procedure, we assume the following form of solution for            (

, , ,b su v w w
) that satisfies the boundary conditions 
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where Umn, Vmn,Wbmn, and Wsmn are arbitrary parameters. Eq.(14) in combination with Eq. (19) 

can be combined into a system of first order equations as:  

    ,K F 
  (25) 

Where,    and  F denotes the columns 
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And: 
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and the elements aij = aji of the coefficient matrix [K]. The elements of the symmetric matrix 

[K] presented in Eq. (26) are given by 
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NUMERICAL RESULTS AND DISCUSSIONS 

In this section, the present refined theory is applied to the bending analysis of FG plates. The 

Poisson’s ratio is fixed at ν = 0.3, and comparisons are made with available solutions. Numerical 

case studies are used to verify the accuracy of the present analysis. The FG plate is taken to be 

made of aluminum and alumina with the following material properties: 

- Metal (Aluminum, Al): Em = 70 GPa; ν = 0.3. 

- Ceramic (Alumina, Al2O3): Ec = 380 GPa; ν = 0.3. 

The various non-dimensional parameters used are: 
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Thickness coordinate: 

hzz /  
As the first example, the deflections and the dimensionless stresses of the square FG plate (a/h 

= 10) for different values of the volume fraction P.  The present predictions (present higher-

order shear deformation theories) are compared with the first-order shear deformation theory 

(FSDPT), higher-order (HSDPT), Exponential (ESDPT) and sinusoidal (SSDPT). The 

inclusion of the porosity factor α is involved in Table 1, 2 and 3. The dimensionless in-plane 

normal stress xσ  and transverse normal stress xzτ  are reported in Table 2 and 3. The stresses are 

compared with those of other theory. Generally, the present theory (with α = 0) gives a good 

prediction of inplane normal stress xσ as compared with different models (ESDPT, HSDTT and 

SSDPT). However, the transverse normal stress xzτ  is in good agreement with the SSDPT 
solution. It should be noted that all theory (FSDPT, ESDPT, HSDTT and SSDPT) were 

obtained on the basis of sinusoidal variation of both in-plane and transverse displacements 

across the thickness. It can be seen that  SSDPT presented sinusoidal theory with five unknowns 

(Touratier, 1991). The present non-porous results (α = 0) almost more accurate than those 

generated by other theories. Also, the present results are compared well with those of other 

solution even for thicker plates. This points to the use of new assumption given in Eq. (7) has 

a maximal effect on the accuracy of the results. The deflection for (FSDPT, ESDPT, HSDPT 

and SSDPT) increases with the increase in the desired fraction, as it is found that the error 

percentage of FSDPT is larger compared to the other modal (ESDPT, HSDPT and SSDPT). It 

can be observed that the results obtained by the present models are identical to those of the 

sinusoidal shear deformation plate theory (SSDPT) and the higher-order shear deformation 

plate theory (HSDPT), respectively. In general, the fully ceramic (P=0) plates give the smallest 

deflections and shear stresses and the largest axial stresses. As the volume fraction exponent 

increases for FG plates, the deflection, axial stress, and shear stress will increase. 

Finally, additional results of deflections and stresses are reported in tables 4, 5 and 6 for porous 

FG plate (α = 0, 0.1 and 0.2). The inclusion of porosity parameter increases the deflection and 

transverse shear stresses and decreases the axial stress for different values of the volume 

fraction graded factor P. In general, the present theory gives comparable results with the 

inclusion of the porosity factor (α =0, 0.1 and 0.2).It is clear that this factor has significant effect 

on the deflections and stresses. The inclusion of porosity parameter increases the deflection and 

transverse shear stresses and decreases the axial stress for different values of the volume 

fraction graded factor P.     

 

Table 1. Comparative study of deflections of FG plate for different volume fraction value and 

(α = 0). 

P FSDPT  ESDPT HSDPT  SSDPT  Present 

0 0.07791 0.07788 0.0779 0.0779 0.0779 

1 0.19703 0.19597 0.19608 0.19603 0.19603 

2 0.2866 0.28465 0.2849 0.28478 0.28478 

3 0.3385 0.33586 0.33624 0.33606 0.33606 

4 0.36737 0.36426 0.36474 0.36451 0.36451 

5 38402 0.38061 0.38116 0.3809 0.3809 

10 0.40768 0.40779 0.40798 0.40709 0.40702 

Metal 0.41919 0.42179 0.42163 0.42172 0.4229 
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Table 2. Comparative study of dimensionless axial stress of FG plate for different volume 

fraction value and (α = 0). 

P FSDPT ESDPT  HSDPT  SSDPT  Present 

0 1.97576 1.99660 1.99432 1.99550 1.99550 

1 0.93765 0.94442 0.94369 0.94407 0.94407 

2 1.36934 1.37738 1.37661 1.37702 1.37702 

3 1.61758 1.62625 1.62551 1.62590 1.62590 

4 1.75384 1.76299 1.76229 1.76266 1.76266 

5 1.83096 1.84056 1.83988 1.84025 1.84025 

10 1.94563 1.95112 1.95074 1.95096 1.95702 

Metal 1.97576 1.98428 1.98353 1.98392 1.99550 

 

Table 3. Comparative study of dimensionless transverse shear stresses of FG plate for different 

volume fraction value and (α = 0). 

P FSDPT  ESDPT  HSDPT  SSDPT  Present 

0 0.15915 0.25379 0.23857 0.24618 0.24618 

1 0.26879 0.34769 0.33432 0.34102 0.34102 

2 0.34891 0.41915 0.40918 0.41426 0.41426 

3 0.41002 0.47831 0.47132 0.47501 0.47501 

4 0.45817 0.53051 0.52540 0.52826 0.52826 

5 0.49708 0.57762 0.57336 0.57590 0.57590 

10 0.61598 0.70958 0.69891 0.70450 0.75375 

Metal 0.15915 0.20739 0.19984 0.20359 0.24618 

 

Table 4. Effects of the volume fraction and porosity coefficient of deflections in a square FG-

plate subjected to sinusoidally distributed load.  

 

Table 5. Effects of the volume fraction and porosity coefficient on the dimensionless axial stress 

of the FG plate. 

Theory α P=0 P=1 P=2 P=3 P=4 P=5 P=10 Metal 

Present 

α=0.0 1.99550 0.94407 1.37702 1.62591 1.76267 1.84026 1.95703 1.99550 

α=0.1 1.99550 0.82120 1.26609 1.54558 1.70732 1.80177 1.94743 1.99550 

α=0.2 1.99550 0.66571 1.10626 1.41992 1.61657 1.73700 1.93093 1.99550 

 

Table 6. Effects of volume fraction and porosity coefficient on the dimensionless transverse 

shear stresses in a square FG-plate subjected to sinusoidally distributed load.  

Theory α P=0 P=1 P=2 P=3 P=4 P=5 P=10 Metal 

Present 

α=0.0 0.24618 0.34103 0.41426 0.47502 0.52827 0.57591 0.75376 0.24618 

α=0.1 0.24618 0.34764 0.42864 0.49672 0.55720 0.61219 0.82651 0.24618 

α=0.2 0.24618 0.35539 0.44641 0.52408 0.59391 0.65850 0.92395 0.24618 

Theory α P=0 P=1 P=2 P=3 P=4 P=5 P=10 Métal 

Present 

α=0.0 0.07790 0.19604 0.28479 0.33606 0.36452 0.38090 0.40703 0.42290 

α=0.1 0.08122 0.21876 0.3573 0.40946 0.45243 0.47780 0.51881 0.34624 

α=0.2 0.08482 0.24749 0.40910 0.52436 0.59694 0.64172 0.71626 0.29310 
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Fig.2. Displacement variation as a function of the power index “P” and the volume fraction of 

porosity α of a FGM plate 

 

The effects of the material index “P” on the adimensional displacement of the perfect and 

imperfect FG plate for different values of the thickness ratio (a/h = 5, a/h = 10, a/h = 20) of the 

plate and different values of porosity coefficient using the present high order shear theory are 

illustrated in Figures 2 and 3 respectively. It should be noted that the dimensionless 

displacement increases with the increase of the value of the power law index for the perfect and 

imperfect FGM plate and that for the three thickness ratios. Displacements are higher for metal 

plates while displacements are lower for all-ceramic plates (P = 0). There is a rapid variation in 

displacements for the low values of the ratio a/h (that is, for a / h >20) where the plate is 

considered thick. Exceeding this ratio of the material index P = 3, the displacements keep a 

more or less constant look and this for the different values of coefficient of the porosity. 
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Fig.3. Variation of dimensionless displacement as a function of the thickness ratio a/h for the 

different values of porosity factor α. 
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Figure 3, shows the increase in dimensionless displacements, which is explained by the 

influence of material stiffness, ie an increase in the value of porosity (α), leads to a decrease in 

the modulus of elasticity of the material plate. An increase in the side-to-thickness ratios (a/h) 

leads to an increase in adimensional displacements. We can also say that the thickness ratio 

(a/h) has a considerable effect on dimensionless displacement. 
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Fig.4. Variation of adimensional displacement as a function of the geometric ratio a/b for the 

different values of porosity factor α. 

 

In figure 4, we study adimensional displacement variation as a function of the geometric ratio 

(a/b) for the different values of porosity coefficient with a ratio of equal thickness (a/h = 10) 

and a material index P = 2. Decreasing of said ratio makes lowering of displacement. 
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Fig.5. Through-the-thickness distribution of axial stress xσ of FGM plates for different porosity 

factor α. 

In figure 5, contains the variation of the axial stress across the plate thickness in FG. The effect 

of the porosity of the FGM plate was taken into account by means of the introduction of the 

coefficient (α). Three values are therefore retained (α = 0, 0.1, and 0.2). It can be seen that the 

increase in the index of porosity (α) leads to an increase in stresses. This can be justified by the 

fact that the porosity reduces the rigidity of the plate. The stresses are tensile above the median 
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plane and compression below the median plane. It is important to observe that the maximum 

stress depends on the value of the exponent of the volume fraction P.  The in-plane normal 

stresses, are compressive throughout the plate up to 3 5.z  , and become tensile afterwards. The 

maximum compressive stresses occur at certain point on the bottom surface and the maximum 

tensile stresses occur, of course, at certain point on the top surface of the FG plate. 

 

 

 

 

 

 

 

 

 

 

Fig.6. Through-the-thickness distribution of transverse shear stress xzτ of FGM plates for 

different porosity factor α. 

In figure 6, shear stresses were plotted through the transverse thickness distribution. It can be 

seen from this figure that the porosity effect has a remarkable direct influence which occurs at 

a point on the median plane of the FG plate and which decreased the transverse shear stress. 

 

CONCLUSION  

A new simple theory of high order shear and normal deformation theory is developed for 

functionally graded plates. This theory satisfies the nullity of the shear stresses at the upper and 

lower surfaces of the plate without using the shear correction factor contrary to other theories. 

The law of the modified mixture covering the porosity phases is used to roughly describe the 

properties of FG-plates with porosity. The principle of virtual displacements is used to derive 

the governing equations and boundary conditions. Then, analytical solutions for functionally 

graded porous rectangular plates are presented. The inclusions of graded and porosity 

parameters are investigated. The effects of various parameters, such as thickness ratio, power 

index (exponent of the volume fraction) “P ”, and volume fraction of porosity on the flexion of 

FG plates are all discussed. Many validations examples are reported and numerical results of 

the present refined plate theory are accurate in predicting the bending response of non-porous 

plates  (α=0). In addition, the present theory gave control results that can be used to evaluate 

various plate theories, and also to compare with the results obtained by another solution 

(FSDPT, ESDPT, SSDPT and HSDPT). From this work, it can be said that the present and 

simple theory for the resolution of the mechanical behavior of FG plates with porosity that 

presses manufacturing defects. 
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